
SCSI RAS Tools High-Level Design for Linux 2.4

 i HLD Rev. 1.2 - 21/Jan/03 03:56 PM

High-Level Design (HLD)
Revision 1.2
Last Updated: 1/21/2003 - 3:56 PM

SCSI RAS Tools
RAID-1 Enhancements for Linux

Primary Author(s): Andrew Cress

Key Contributors:

SCSI RAS Tools High-Level Design for Linux 2.4

 ii HLD Rev. 1.2 - 21/Jan/03 03:56 PM

Legal Notices and Disclaimers

Disclaimers
THE INFORMATION IS FURNISHED FOR INFORMATIONAL USE ONLY, IS SUBJECT TO CHANGE WITHOUT
NOTICE, AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY INTEL CORPORATION. INTEL
CORPORATION ASSUMES NO RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR INACCURACIES THAT MAY
APPEAR IN THIS DOCUMENT OR ANY SOFTWARE THAT MAY BE PROVIDED IN ASSOCIATION WITH THIS
DOCUMENT. THIS INFORMATION IS PROVIDED "AS IS" AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THE USE OF THIS INFORMATION INCLUDING WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, COMPLIANCE WITH A SPECIFICATION OR STANDARD, MERCHANTABILITY OR
NONINFRINGEMENT.

Legal Notices
Copyright © 2002, Intel Corporation. All rights reserved.

The Intel logo is a registered trademark of Intel Corporation.

Other brands and names are the property of their respective owners.

SCSI RAS Tools High-Level Design for Linux 2.4

 iii HLD Rev. 1.2 - 21/Jan/03 03:56 PM

Abstract

This design document describes the SCSI RAS Tools RAID-1 Mirroring project for Carrier
Grade Linux Enhancements using Linux 2.4 and later kernels.

Hard disks are the most common system element to be replaced, and are therefore a critical
consideration in improving availability. Disk Mirroring (RAID-1) is the technique of using
redundant disks to record multiple copies of the data so that a failure of one disk does not cause
data loss. Linux currently provides some software RAID-1 functionality in the base kernel.
These changes enhance the reliability, availability and serviceability of the various drivers that
are commonly used in a Linux software RAID-1 configuration. A separate effort within Intel has
been made to enable various common hardware RAID adapters and their drivers on Linux.

The implementation includes changes to the md, scsi, and aic7xxx kernel drivers. For the md
(software RAID) driver, it adds additional hardening to increase reliability and enhancements to
provide additional logging for serviceability. For the scsi driver, it adds additional hardening and
enhanced logging and statistics capability to this layer. For the aic7xxx driver, additional
hardening and enhanced logging capabilities are added. These enhancements also include added
SCSI serviceability tools to update disk firmware, view & update mode pages, view defect lists,
and perform diagnostic functions using Linux.

The Disk Mirroring enhancements reduce the amount of out-of-service time for disk problems
via redundancy and in-service tools to diagnose problems and effect repairs to a failed disk while
the system is operational under Linux.

SCSI RAS Tools High-Level Design for Linux 2.4

 iv HLD Rev. 1.2 - 21/Jan/03 03:56 PM

Revision History

Revision Date Author Reason for Changes
0.1 3/26/2002 Andy Cress Release 1.2 Design for Disk Mirroring

0.2 4/12/2002 Andy Cress More detail added

0.3 4/18/2002 Andy Cress Title change, TOC, moved some links

0.4 5/15/2002 Andy Cress More info on hot-insertion & RSM SCSI in section 4.10

0.5 6/07/2002 Andy Cress Section 4.5.2: Updated sgraidmon.c methods
Section 4.9: Show the statistics that rmscsi exposes

1.0 7/30/2002 Andy Cress Edits for carrierlinux.org

1.1 9/12/2002 Andy Cress Changed some terminology and links for CGLE
sourceforge projects.

1.2 1/21/2003 Andy Cress Cleaned up header/footer & added PCP reference

SCSI RAS Tools High-Level Design for Linux 2.4

 v HLD Rev. 1.2 - 21/Jan/03 03:56 PM

Table of Contents

1. Introduction..1
1.1 Purpose of this Document ..1
1.2 Document Scope...1
1.3 Terminology ...1
1.4 Related Documentation ..3

2. Methodologies and Notations ..4
3. Assumptions and Dependencies ..4
4. High-level Design ..4

4.1 Design Decomposition ...4
4.2 Component Descriptions ..5
4.3 Internal Components...5
4.4 Internal Data Structure Map ...7
4.5 Internal Methods...8

4.5.1 Scsiras kernel modules...8
4.5.2 Scsirastools user-space methods ..8

4.6 System Dependencies & File Structures ..10
4.7 External Data Structures...11
4.8 External APIs..13
4.9 Design Strategies ..14

4.9.1 Product Installation Strategy..17
4.9.2 Initialization and Shutdown Strategies ..17
4.9.3 Interoperability and Compatibility Support ...17

4.10 Key Design Decisions and Alternatives..18
4.11 Product Requirements Document (PRD) Correlation...20

B.1 Scenario 1 – Disk bad spot develops...24
B.2 Scenario 2 – Systematic defect is discovered in disk configuration or firmware24
B.3 Scenario 3 – A disk fails to function ...24

SCSI RAS Tools High-Level Design for Linux 2.4

 1 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

1. Introduction

1.1 Purpose of this Document

The purpose of this document is to define the scope of the work to be done in improving the
RAS features of the Linux Disk Mirroring Subsystem. The target environment for these
improvements is for high availability systems using either SCSI or IDE disk drivers, and Linux
software mirroring (RAID-1), although these improvements would also apply to other
environments using the same improved components.

Since the disk subsystem is by far the most common hardware component to be replaced, any
improvements that minimize outages for servicing these components will add significantly to the
overall system Reliability, Availability and Serviceability (RAS).

It is our intention to make the targeted software improvements to the Disk Mirroring Subsystem
freely available to the Linux open source community so that they may be included in future
versions of Linux, and to make these improvements available to customers for their use as
updates to existing versions of Linux in the meantime.

1.2 Document Scope

This design document deals with the implementation and improvement of software RAID
capabilities within Linux 2.4. Anyone interested in understanding the Disk Mirroring internal
design should read this document. This document does not deal with drivers for hardware RAID
adapters, and these are addressed separately.

The Intel hardware RAID adapter drivers can be found on the support.intel.com site at the URLs
in section 1.4. For other vendor hardware RAID adapter drivers, refer to either the Linux kernel
source, or to the vendor web site.

1.3 Terminology

Acronym/
Abbrev.

Description

HLD High-Level Design

CGLE Carrier Grade Linux Enhancements

RAS Reliability, Availability, and Serviceability

SCSI Small Computer System Interface

RAID Redundant Array of Inexpensive Disks

IDE Integrated Drive Electronics (also known as ATA)

SCSI RAS Tools High-Level Design for Linux 2.4

 2 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

Acronym/
Abbrev.

Description

ATA Advanced Technology Attachment (see IDE)

RSM Resource Statistics Monitor (see project documentation in section 1.4)
Table 1-1: Definition of Acronyms used.

For additional terminology, see “Appendix A: Definitions”

SCSI RAS Tools High-Level Design for Linux 2.4

 3 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

1.4 Related Documentation

Document Name Revision Doc #
Carrier Grade Linux Enhancements from OSDL
http://developer.osdl.org/

CarrierLinux.org Project Repository
http://www.carrierlinux.org

Latest versions of Disk Mirroring documentation and beta software
http://scsirastools.sourceforge.org/

Driver Hardening and Manageability
http://hardeneddrivers.sourceforge.net/

1.8

Linux Resource Statistics Monitoring - Architecture Specification
http://resourcemntrd.sourceforge.net/
See also: http://pcp4cgl.sourceforge.net

0.03

Linux System RAS Projects on SourceForge:
http://sourceforge.net/projects/systemras/

SCSI Draft Standards: ftp://ftp.t10.org/t10/drafts/
Justin Gibbs’ Adaptec aic7xxx driver site
http://people.freebsd.org/~gibbs/linux/

General overview of RAID:
http://www.pcguide.com/ref/hdd/perf/raid/index.htm

Linux High Availability RAID
http://www.linas.org/linux/Software-RAID/Software-RAID-9.html

Linux SCSI Generic driver and utilities: http://gear.torque.net/sg/
Adaptec SCSI Specifications (see esp. AIC-7899)
http://www.adaptec.com/worldwide/product/prodtechindex.html?cat=%2fT
echnology/SCSI&source=home

LSI/Symbios SCSI Specifications (see esp. LSI 53C1030)
http://www.lsilogic.com/products/stor_prod/oem/io/specs.html
ftp://ftp.lsil.com/HostAdapterDrivers/linux/ (drivers)

Linux SCSI Generic Interface
http://www.torque.net/sg

Neil Brown’s mdctl & mdadm utilities
http://www.cse.unsw.edu.au/~neilb/source/mdctl/

Intel hardware RAID adapter drivers:
 http://support.intel.com/support/motherboards/server/srcu31/index.htm
 http://support.intel.com/support/motherboards/server/srcu31l/index.htm
 http://support.intel.com/support/motherboards/server/srcu21/index.htm

Table 1-2: Related Documentation

SCSI RAS Tools High-Level Design for Linux 2.4

 4 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

2. Methodologies and Notations

3. Assumptions and Dependencies

All of the code within the scope of this document is assumed to be open source. The kernel
modules are under GPL license, and the user-space utilities are under BSD-style licensing.

Below is a list of maintainers related to this project from the Linux 2.4 MAINTAINERS list.
The Linux Kernel Mailing List applies to all of these, at linux-scsi@vger.kernel.org.

Module Name Maintainer
Name

Email Address Module Web Site

Adaptec
aic7xxx driver

Justin Gibbs gibbs@scsiguy.com http://people.freebsd.org/~gibbs/linux/

sym53c8xx
driver

Gerard Roudier groudier@free.fr
groudier@club-internet.fr

ftp://ftp.tux.org/pub/people/gerard-roudier
http://www.lsilogic.com

SCSI
Subsystem

Eric Youngdale linux-scsi@vger.kernel.org
eric@andante.org

http://www.kernel.org

SCSI SG
Driver

Doug Gilbert dgilbert@interlog.com http://www.torque.net/sg

Software
RAID
(Multiple
Disks) Support

Ingo Molnar
Neil Brown

mingo@redhat.com
neilb@cse.unsw.edu.au
linux-raid@vger.kernel.org

http://linas.org/linux/raid.html
http://www.cse.unsw.edu.au/~neilb/source/mdctl/

Logical
Volume
Manager

Heinz
Mauelshagen

Linux-LVM@EZ-
Darmstadt.telekom.de

http://linux.msede.com/lvm

Table 3-1 Linux Maintainers Related to Disk Mirroring

4. High-level Design
4.1 Design Decomposition

Below are the hardware and software components in the Linux Disk Mirroring subsystem.

User-space User Application, Tool, or Database
Kernel Software RAID modules (md, raid1, lvm)
Kernel SCSI Adapter driver

Hardware SCSI Host Adapter
Hardware SCSI Disk Device(s)

Table 4-1 Disk Mirroring Components

SCSI RAS Tools High-Level Design for Linux 2.4

 5 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

The focus of this project is to improve the RAS qualities of the Linux Kernel modules that are
used in Disk Mirroring for the target environment. The ‘md’ (multiple devices) and LVM
(Logical Volume Manager) modules in Linux provide the RAID0, RAID1 or RAID5 capability.
The most common SCSI host adapters for the target environment are the Adaptec SCSI
‘aic7xxx’ driver, and the LSI Logic (was Symbios) ‘sym53c8xx’ driver.

4.2 Component Descriptions

4.3 Internal Components

User-space other tools
mdadm

RSM scsi_event
library

scsirastools
sgdiag, sgmode, sgdskfl,

sgdefects, sgraidmon
raid1 (or raid5, etc.)

md (multiple devices)
sg (SCSI Generic driver) sd (block driver for scsi disks)

scsi (mid-layer)

Kernel

aic7xxx sym53c8xx
SCSI Host Adapter Hardware
SCSI Disk Devices

Table 4-2 Disk Mirroring Internal Components
The shaded areas are those covered by the Disk Mirroring feature.

The md kernel module is the core of the Linux software RAID feature. It provides redundancy
and device mapping at the partition level for hard disk data. Software RAID also encompasses
several other related modules: raid, raid0, raid1, raid5, lvm-mod, linear, multipath, and xor.
For the purposes of the scsirastools RAID-1 project, the critical modules are md and raid1.

Md Core software RAID module in Linux, supports multiple physical spindles
through a single logical device. Required for RAID and LVM.

Raid Combine several hard disk partitions into a logical block device (/dev/md*).
raid0 striping data across multiple partitions/disks without any parity. Enhances

performance, but there is no redundancy.
raid1 keeping a duplicate copy of one partition/disk on a standby partition/disk. Either

disk can maintain data integrity if the other one is lost.
raid5 striping data across multiple partitions/disk including parity, so that removing

any one partition/disk will not break the data integrity
Linear mode that allows partitions to be appended together as logical devices.
Xor checksumming parity logic used by the raid5 module.
lvm-mod Logical Volume Manager provides a way to administer software RAID devices

in logical volumes, and allowing the administrator to resize logical volumes.
multipath Multipath-IO is the ability of certain devices to address the same physical disk

over multiple 'IO paths'. The code ensures that such paths can be defined and
handled at runtime, and ensures that a transparent failover to the backup path(s)

SCSI RAS Tools High-Level Design for Linux 2.4

 6 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

happens if a IO errors arrives on the primary path. This is used in shared SCSI
environments where there are multiple host adapters.

Table 4-3 Software RAID Kernel Modules

The scsi mid-layer kernel module encompasses the core scsi modules. This layer also contains
these modules: sd for scsi disks, sg for SCSI generic access, and sr and st for CD-ROMs and
tapes. These provide the framework for common SCSI functions used by all SCSI host adapters.
Each host adapter driver provides device-specific routines in a format that the scsi module can
use.

The aic7xxx kernel driver provides device-specific support for Adaptec SCSI chipsets in the
AIC7xxx family. This driver supports all of Adaptec’s PCI-based SCSI controllers, but not the
hardware RAID controllers. It also supports the AIC7770-based EISA and VLB SCSI
controllers. This is an Adaptec-sponsored driver written by Justin Gibbs. It is intended to
replace the previous aic7xxx driver maintained by Doug Ledford since Doug is no longer
maintaining that driver (labeled “aic7xxx_old” in Linux 2.4 kernels). See
http://people.freebsd.org/~gibbs/linux/ for more information. Intel TSRLT2 server platforms use
Adaptec 7899 chips on the motherboard, and this is a commonly used SCSI chipset.

The sym53c8xx kernel driver provides device-specific support for LSI/Symbios SCSI chipsets in
the SYM53C8xx family. There are several versions of this driver: sym53c8xx_2, sym53c8xx,
and ncr53c8xx. For more information about these driver versions, see these files in the kernel
source tree: drivers/scsi/sym53c8xx_2/Documentation.txt and drivers/scsi/README.ncr53c8xx.
There are also drivers from LSI available at ftp://ftp.lsil.com/HostAdapterDrivers/linux/. One
key target chipset to be used on some Intel server platforms will be LSI 53C1030. The
sym53c8xx_2 ver sym-2.1.17a driver, from the kernel.org source, is the latest version as of this
writing, and it currently only supports up to LSI 53C1010.

The user-space tools shall be able to use the SCSI-generic driver to access SCSI devices directly.
Of course, the utilities are run as needed and have no persistent resources. The SCSI Generic
interface requires that the kernel configuration file have CONFIG_CHR_DEV_SG=y. The
following utilities shall be implemented:

• sgdskfl
This utility uses the SCSI Generic interface to update the disk firmware microcode for
various types of SCSI disk and tape devices. The appropriate algorithm is chosen,
depending on the vendor and product model of each SCSI device. A log file is created by
default to track progress. The firmware microcode images are, by default, named so that
they match the device model name, with the suffix “.lod”. Safeguards are provided to
scan the firmware image and verify that it matches the target device model. Measures are
taken after the firmware is downloaded to make sure that the disk becomes ready again
after it restarts with the new microcode (sometimes a “start_unit” command is needed).
Depending on the type of device, this process takes approximately 90 seconds per device.
The utility is intended to allow disk firmware to be upgraded while Linux is running.
The device could be taken offline if it is part of a RAID, or left online if a 90-second
delay is tolerable. Upgrading disk firmware has no impact on the data portion of the disk.

SCSI RAS Tools High-Level Design for Linux 2.4

 7 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

• sgmode
This utility uses the SCSI Generic interface to read the SCSI device mode pages and also
to write the mode pages. It first lists all SCSI devices in the system with all pertinent
information. The user can choose one of these devices to read and/or write the desired
mode page values. This utility is unique in that it reads all of the mode pages at once,
and can set all of the mode pages from a mode format (*.mdf) file for each disk model.
Thus, if mdf files exist for each disk model in the system, all of their mode pages could
be set automatically in one pass. The logical capacity of the device can also be changed
when writing the mode pages, and a special confirmation is required if a capacity change
is about to occur, since a this can affect the data portion of the disk. By default, only
mode pages are modified, so this utility can actually be run at any time during normal
Linux operation. A log file is written by default, and the mode pages are always read
before new values are written, so that the original values can be preserved if needed.

• sgdefects
This utility uses the SCSI Generic interface to obtain the device defect lists. This is
useful for analyzing the number of grown defects over time to predict when a device
failure may occur. The utility can gather the number of factory and grown defects by
querying the device, and optionally list each of the defects (in the log file). A log file is
created by default for diagnostic purposes.

• sgdiag
This utility uses the SCSI Generic interface to send specific SCSI commands to a given
device for diagnostic, administrative, or testing purposes. A log file is created by default.
Several different functions can be performed with this utility, such as:

o Compose a SCSI command to send (for testing)
o Reset SCSI bus (last resort for SCSI protocol errors)
o Format SCSI disk (low level SCSI format, use with caution)
o Test for common problems

• sgraidmon
This utility uses the SCSI Generic interface to monitor the status of SCSI devices in the
system and take action when a device is hot-removed or hot-inserted. It uses SAF-TE
commands to obtain hot-insertion information from hot-swap backplanes, and polls the
attached SCSI devices to look for any change in status. If a device is hot-removed, this
utility invokes a script to remove the device’s partitions from the software RAID. If a
device is hot-inserted, a script is invoked to add it to the software RAID and remirror it, if
that device’s name is configured in /etc/raidtab. This utility can optionally run as a
background daemon.

• RSM scsi_event library
This is a library which reports SCSI statistics to a common Resource Statistics
Monitoring daemon (StatSentry). This subsystem library is a loadable library which
takes /proc/scsi/scsi statistics and some grown defect data (see sgdefects) and provides it
in a common form to RSM. This library is merged in with that open-source project at
http://sourceforge.net/projects/resourcemntrd.

4.4 Internal Data Structure Map

SCSI RAS Tools High-Level Design for Linux 2.4

 8 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

MODULE DATA STRUCTURE REFERENCE
sgmode SCSI-3 Primary Commands – section 8.3 Mode Parameters

SCSI-3 Block Commands – section 7.1.3 Mode Parameters
sgdskfl SCSI-3 Primary Commands – section 7.25 Write Buffer Command
sgdefects SCSI-3 Block Commands – section 6.1.7 Read Defect Data
sgdiag SCSI-3 Block Commands – section 6.1.1 Format Unit
sgraidmon SCSI Accessed Fault-Tolerant Enclosures (SAF-TE) specification 1.0
sgerr.c SCSI-3 Primary Commands – section 7.20 Request Sense Command
md $kernel_source/Documentation/md.txt
scsi $kernel_source/Documentation/scsi.txt

$kernel_source/Documentation/scsi-generic.txt
aic7xxx $kernel_source/drivers/scsi/README.aic7xxx
sym53c8xx_2 $kernel_source/drivers/scsi/sym53c8xx_2/Documentation.txt

4.5 Internal Methods

4.5.1 Scsiras kernel modules
Since each of the scsiras kernel components are existing modules in the kernel source, the scope
of their methods is left to the kernel documentation above and the list of source files for each
module are listed here.

md drivers/md linear.c, lvm.c, lvm-fs.c, lvm-snap.c, md.c,
multipath.c, raid0.c, raid1.c, raid5.c, xor.c

scsi drivers/scsi scsi.c hosts.c scsi_ioctl.c constants.c scsicam.c
scsi_proc.c scsi_error.c scsi_obsolete.c scsi_queue.c
scsi_lib.c scsi_merge.c scsi_dma.c scsi_scan.c
scsi_syms.c

sd drivers/scsi sd.c

sg drivers/scsi sg.c

aic7xxx drivers/scsi/aic7xxx aic7770.c aic7770_linux.c aic7xxx_93cx6.c aic7xxx.c
aic7xxx_linux.c aic7xxx_linux_pci.c aic7xxx_pci.c
aic7xxx_proc.c

sym53c8xx drivers/scsi/sym53c8xx_2 sym_fw.c sym_glue.c sym_hipd.c sym_malloc.c
sym_misc.c sym_nvram.c

4.5.2 Scsirastools user-space methods

Getmd.c int findmatch(char *buffer, int sbuf, char *pattern, int spattern, char figncase)

int getline(FILE * fd, char *buf, int len)
int getmd(char *devpattn, int sdevpattn, char *mddev, char *mdpart)
int main(int argc, char **argv)

SCSI RAS Tools High-Level Design for Linux 2.4

 9 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

Sgsub.c int get_sense(int sts, uchar * buf)
int sense_report(int sts, const char *errmsg, uchar * bufp)
void i2h(uchar * chp, int len, char *str)
void dumpbuf(FILE * fdout, uchar * bufp, int mlen)
int get_serial(int sgfd, uchar * buf, int rlen)
int scsi_inquiry(int sgfd, uchar * buf, int rlen)
int test_unit_ready(int sgfd, char fshowmsg)
int read_capacity(int sgfd, ulong * dsize)
int write_buffer(int sg_fd, uchar * buf, ulong len, uchar mod, uchar bufid)
int get_defects(int sgfd, uchar * buf, int len, char fplist)
int mode_sense(int sgfd, uchar page, uchar * buf)
int mode_select(int sgfd, uchar * buf, uchar len)
int start_unit(int sgfd)
int scsi_reset(int sgfd, int type)
int scsi_format(int sgfd, uchar patt, int timeout, int noglist)
int seagate_inquiry(int sgfd, uchar * buf, int rlen)
int sn_inquiry(int sgfd, uchar pgcode, uchar * buf, int rlen)
int send_scsicdb(int sgfd, uchar * wbuf, int wlen, uchar * rbuf, int rlen)
int send_scsicdb1(int sgfd, uchar * wbuf, int wlen, uchar * rbuf, int rlen)
int set_sg_debug(int sgfd, int dbglvl)

Sgcommon.c void closefd(void);
void closelog(void);
void closeall(void);
void quit(int rc);
void itoh(uchar * chp, int len, char *str);
int findmatch(char *buffer, int sbuf, char *pattern, int spattern, char figncase);
uchar get_ndev(int first);
uchar get_idev(void);
uchar get_mdev(char *model);
char get_func(void);
void do_pause(void);
void showit(char *buf);
void dumpbufr(FILE * fdout, uchar * bufp, int mlen, char *hdr);
void make_dev_name(char *fname, int k, int fnumeric);
int get_ival(char *valstr, char fhex);
int get_scsi_info(int sgfd, int idx, char *fname, int fservo);

Sgerr.c void show_host_status(FILE * fdout, int host_status)
void show_driver_status(FILE * fdout, int driver_status)
void show_sense_err(FILE * fdout, const char *leadin,
 const unsigned char *sense_buffer, int sb_len)
int sg_chk_err(FILE * fdout, const char *leadin, int masked_status,
 int host_status, int driver_status,
 const unsigned char *sense_buffer, int sb_len)

Sgdiag.c int main(int argc, char **argv)
int do_reset(int idx, int type)
int do_sninquiry(int idx)

SCSI RAS Tools High-Level Design for Linux 2.4

 10 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

int do_format(int idx, int noglist)
int do_sendcdb(int idx)
int beforegd(int idx, int *pnumrdy)

Sgdefects.c void dumpdlist(FILE * fdout, uchar * bufp, int mlen)
int main(int argc, char **argv)
ulong cap_report(u_char * buf)
void showmodebuf(FILE * fdout, uchar * bufp)
int do_getdefects(int idx, char fvalues)
int beforegd(int idx, int *pnumrdy)

Sgdskfl.c int main(int argc, char **argv)
ulong getimage(int idx, uchar ** pbuf, char fservo)
int write_buffers(int sgfd, uchar * buf, ulong len, uchar fservo)
int writeimage(int idx, uchar * imgbuf, ulong len, char fservo)
int beforedl(int idx, int *pnumrdy)
int afterdl(void)

Sgmode.c int main(int argc, char **argv)
ulong cap_report(u_char * buf)
int do_modeselect(int idx)
void showmodebuf(FILE * fdout, uchar * bufp)
int do_modesense(int idx)
int beforemd(int idx, int *pnumrdy)
int aftermd(void)

Sgraidmon.c int getmd(char *devpattn, int sdevpattn, char *mddev, char *mdpart)
int read_safte(int sgfd, int mode, uchar *buf, int len)
static int sg_cmd(int sgfd, uchar *cdb, int cdblen, uchar *data, int dlen)
void make_dev_name(char *fname, int k, int do_numeric)
int scanit(int bmode)
int mkdaemon(int fchdir, int fclose)
int main(int argc, char **argv)

4.6 System Dependencies & File Structures

The kernel configuration must have CONFIG_MD=y and CONFIG_BLK_DEV_MD=y. Root
mirroring via software RAID will not work if md is built as a module. CONFIG_MD_RAID1
can be either =m or =y. Of course, most Linux kernels use a ramdisk image to initialize optional
modules that may be required during boot, so CONFIG_BLK_DEV_RAM=y,
CONFIG_BLK_DEV_INITRD=y, and CONFIG_BLK_DEV_LOOP =y or =m.

In the kernel configuration, CONFIG_CHR_DEV_SG must be =y to support the scsirastools.
Also, the scsirastools support both numeric (/dev/sg0, /dev/sg1) and alphanumeric (/dev/sga,
/dev/sgb) representation of sg devices. If only one representation is provided in a given Linux
distribution, use the “-n” option with each tool switch device naming modes. RedHat supports
both modes, while MontaVista supports only numeric mode. Hence, the default mode for the
scsirastools will be numeric mode.

SCSI RAS Tools High-Level Design for Linux 2.4

 11 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

4.7 External Data Structures

The /proc interface provides a variety of data which is available to external user-space programs.
Also, the mdadm utility provides the ability to examine the software raid superblock on a given
disk partition. An example of the data that is available is shown below.

cat /proc/mdstat
Personalities : [raid1] [multipath]
read_ahead 1024 sectors
md1 : active raid1 sdb1[1] sda1[0]
 72192 blocks [2/2] [UU]

md2 : active raid1 sdb5[1] sda5[0]
 136448 blocks [2/2] [UU]

md0 : active raid1 sdb6[1] sda6[0]
 8747264 blocks [2/2] [UU]

unused devices: <none>

mdadm --examine /dev/sda1
/dev/sda1:
 Magic : a92b4efc
 Version : 00.90.00
 UUID : 2a069a6a:fabfbd17:869c5640:b1e930fc
 Creation Time : Fri Mar 22 11:58:40 2002
 Raid Level : raid1
 Size : 72192
 Raid Disks : 2
 Total Disks : 2
Preferred Minor : 1

 Update Time : Wed Apr 17 10:52:04 2002
 State : dirty, no-errors
 Active Drives : 2
 Working Drives : 2
 Failed Drives : 0
 Spare Drives : 0
 Checksum : 7fd237e6 - correct
 Events : 0.70

 Number Major Minor RaidDisk State
this 0 8 1 0 active sync /dev/sda1
 0 0 8 1 0 active sync /dev/sda1
 1 1 8 17 1 active sync /dev/sdb1

cat /proc/scsi/scsi
Attached devices:
Host: scsi0 Channel: 00 Id: 00 Lun: 00
 Vendor: IBM Model: DPSS-309170N Rev: S93E Ser#: ZD139931
 Type: Direct-Access ANSI SCSI revision: 03
 Tallies: timeouts 0 resets 0 par_errs 0 disk_errs 0 trans_errs 0 user_errs 1
Host: scsi0 Channel: 00 Id: 01 Lun: 00
 Vendor: IBM-ESXS Model: ST336605LW !# Rev: B244 Ser#: 3FP0WHD4

SCSI RAS Tools High-Level Design for Linux 2.4

 12 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

 Type: Direct-Access ANSI SCSI revision: 03
 Tallies: timeouts 0 resets 0 par_errs 0 disk_errs 0 trans_errs 0 user_errs 1

cat /proc/scsi/aic7xxx/0
Adaptec AIC7xxx driver version: 6.2.4
aic7899: Ultra160 Wide Channel A, SCSI Id=7, 32/253 SCBs
Channel A Target 0 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
 Goal: 160.000MB/s transfers (80.000MHz DT, offset 63, 16bit)
 Curr: 160.000MB/s transfers (80.000MHz DT, offset 63, 16bit)
 Channel A Target 0 Lun 0 Settings
 Commands Queued 18921
 Commands Active 0
 Command Openings 253
 Max Tagged Openings 253
 Device Queue Frozen Count 0
Channel A Target 1 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
 Goal: 160.000MB/s transfers (80.000MHz DT, offset 63, 16bit)
 Curr: 160.000MB/s transfers (80.000MHz DT, offset 63, 16bit)
 Channel A Target 1 Lun 0 Settings
 Commands Queued 19305
 Commands Active 0
 Command Openings 64
 Max Tagged Openings 253
 Device Queue Frozen Count 0
Channel A Target 2 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 3 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 4 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 5 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 6 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 7 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 8 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 9 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 10 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 11 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 12 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 13 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 14 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 15 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)

cat /proc/scsi/aic7xxx/1
Adaptec AIC7xxx driver version: 6.2.4

SCSI RAS Tools High-Level Design for Linux 2.4

 13 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

aic7899: Ultra160 Wide Channel B, SCSI Id=7, 32/253 SCBs
Channel A Target 0 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 1 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 2 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 3 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 4 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 5 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 6 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 7 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 8 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 9 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 10 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 11 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 12 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 13 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 14 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)
Channel A Target 15 Negotiation Settings
 User: 160.000MB/s transfers (80.000MHz DT, offset 255, 16bit)

4.8 External APIs

sg device interface (see http://gear.torque.net/sg/ for more information):

open(const char * filename, int flags)
write(int sg_fd, const void * buffer, size_t count)
read(int sg_fd, void * buffer, size_t count)
close(int sg_fd)
ioctl(int sg_fd, int command, ...) [sg specific]
poll(struct pollfd * udfds, unsigned int nfds, int timeout_ms)
fcntl(int sg_fd, int cmd) or fcntl(int sg_fd, int cmd, long arg)

sd device interface (see scsiinfo for sample usage: ftp://tsx-11.mit.edu/pub/linux/ALPHA/scsi/)

fd = open(devicename, O_RDWR);
status = ioctl(fd, 1 /* SCSI_IOCTL_SEND_COMMAND */, buffer);
close(fd);

md interface used by mdadm (sample usage, see mdadm ref in section 1.4 for more
information):

mdfd = open(dev, O_RDWR, 0);
ret = ioctl(mdfd, BLKGETSIZE, &size);

SCSI RAS Tools High-Level Design for Linux 2.4

 14 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

ret = lseek64(mdfd, offset, 0);
ret = read(mdfd, super, sizeof(*super));
ret = write(mdfd, super, sizeof(*super));
ret = fstat(mdfd, &stb);
close (mdfd);

4.9 Design Strategies

SCSIRAS RAID-1 Mirroring enhancements included in release 1.0:
 * aic: Upgrade of the aic7xxx driver from version 6.1.7 to version 6.2.2
 See http://people.freebsd.org/~gibbs/linux/ for associated change history.
 * aic: Removed and handled 4 panic sites in aic7xxx
 * aic: Improved recovery from scsi parity errors
 * aic/scsi/md: Added calls to Enterprise Event Logging (via CONFIG_EVLOG).
 * scsi: Improved logging of check conditions and bus_resets in scsi.
 * scsi: Changed some error messages in scsi to be less informal
 * scsi: Added display of the device serial number to scsi messages.
 * scsi: Added a test_unit_ready retry after resets in scsi error handling.
 * scsi: Added serial number & tallies to /proc/scsi/scsi.
 * md: Added additional debug messages
 * md: improved raid1 error handling during resync/reconstruct
 The most significant one is that if you had a mirrored set in which all the devices failed, then write
 requests would never return, whereas they should return with an error.
 * md: fixed null pointer dereference oops in lvm code, where it referenced an invalid LV if /boot is not on
 the root fs.
 * md: more granular locking during md resync
 * md: fixed some unchecked pointer sites in md.c
 * md: improvements to resync code speed window
 * md: set md_notifier priority to 1 to avoid race condition with other notifiers it depends on in the stack
 with priority 0.
 * md: improved md error handling to not mark last disk faulty
 * md: Clarified resync message text
 * md: dont show a bug if we hotadd a disk in a new slot
 * md: if a faulty disk was removed, don't check it any more
 * tools: create sgdskfl, sgmode, sgdefects, and sgdiag tools for administering various disk models.
SCSIRAS RAID-1 Mirroring enhancements added in release 1.1:
 * aic: The driver in kernel 2.4.17 is now version 6.2.4 which includes some patches from TLT 1.0
 * scsi: add additional tallies to /proc/scsi/scsi
 * md: many of the patches backported into TLT 1.0 are already in kernel 2.4.17
 * md: validate superblocks before writing to avoid inconsistent values

SCSIRAS RAID-1 Mirroring features to be added in release 1.2:

• md/scsi: Support hot-insertion of disks into software RAID-1
There is currently no support for this functionality in the Linux software RAID
subsystem. This will entail leverage of some existing open-source tools as well as
original code to implement the following functions:

SCSI RAS Tools High-Level Design for Linux 2.4

 15 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

o Hot-Insertion event recognition. The software RAID subsystem can currently
recognize removal events, but not insertion events. This will require utilization of
the hotplug device interface and a monitoring function (mdadm --follow, scsimon
and/or sgraidmon) to recognize the successful insertion of a SCSI disk. The
monitoring function may need to utilize functions at either the scsi layer or the
software RAID layer, or both. This may also require kernel fixes to allow the disk
to be successfully hot-inserted.

o Unique device enumeration (required for accurately recognizing transition events
above). This could be accomplished leveraging the open-source scsimap utility,
which also allows the SCSI serial number to be used to verify uniqueness.

o Preparation of the inserted disk for remirroring (automatically set up partitions to
match the disk to be mirrored). This will require a modified version of fdisk that
supports saving partition information from one disk and restoring it to another
disk. The sfdisk utility provides this functionality.

o Auto-initiating a remirror on the inserted disk, based on certain criteria. This will
utilize either the mdadm or raidhotadd existing open-source utilities.

All of these functions should take place automatically by default. The goal is to make the
software RAID functionality comparable to hardware RAID adapter functionality.

• sym: Support for LSI/Symbios SCSI Adapter chipset (sym53c8xx_2)
There are three flavors of the Symbios driver currently in the Linux kernel source. The
sym53c8xx_2 driver was chosen because it replaces the other two and includes the latest
LSI chip support. There are only 5 calls to panic() in the current sym-2.1.17a version of
this driver. It will be enhanced to hardening level 2, according to the Driver Hardening
White Paper. The LSI 53C1030 chipset will be used on the motherboard of Tiger-4 and
some future Intel platforms. Development and testing of this feature is dependent upon
obtaining a system with the LSI 53C1030 chipset.
UPDATE: This was postponed to release 1.3 due to scheduling issues.

• rm/scsi: Add a Resource Statistics Monitor scsi_event subsystem library to track errors
and predict SCSI disk failures before they occur. There are a number of event tallies
available via /proc/scsi/scsi from previous TLT changes. There is also a tool to extract
the grown defect information from a disk drive (sgdefects). The scsi_event library will
utilize these statistics to measure the change in events over time, and can provide a
sample algorithm for empirically predicting when a disk device may fail from this data.
When the library determines that a disk failure is imminent this will cause a Resource
Statistics Monitor event (which should include enough information to uniquely identify
the disk device and its symptoms), and the Resource Statistics Monitor will trigger
whatever action the user has configured. Resource Statistics Monitor is a related open-
source project at http://sourceforge.net/projects/resourcemntrd.
The scsi_event library will utilize an algorithm in the RSM daemon to allow it to track
trends and/or historical statistics (an RSM dependency). The statistics to be gathered for
each disk device are: serial number, scsi timeouts, scsi resets, scsi parity errors, disk-
related sense errors, transient sense errors, user-related sense errors, and number of
grown defects on the disk. A fault management module (user-space) will then use a
decision tree to determine if a failure is imminent, and if so, which part is the likely

SCSI RAS Tools High-Level Design for Linux 2.4

 16 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

cause. This fault management module will be an application which uses RSM, but will
be separate from the RSM scsi_event library. The table below shows which statistics are
most likely to trend up from which type of fault.

STATISTIC SCSI
Adapter
fault

SCSI
Cabling
fault

Disk
device
fault

Software
fault

SCSI Timeouts Y Y * Y

SCSI Resets Y Y Y Y

SCSI Parity Errs Y Y Y

Disk sense errors Y

Disk grown defects Y

Fault Indicator Matrix
* = only when accompanied by another statistic also.

RM subsystem libraries should not block, so that they do not affect the RM daemon.
Therefore, the scsi_event library will do the following when it polls for various statistics:
1) read any waiting grown defect responses pending from the disk via scsi-generic.
2) send a new request for the number of grown defects to the disk via scsi-generic (non-
blocking).
3) open/read/close /proc/scsi/scsi to obtain the other statistics (tallies & serial number).

Below are the statistics that the rmscsi subsystem library will expose for each device.
ScsiEvent Subsystem
 No Resources: 2
 rid: 0 /dev/sda
 rid: 1 /dev/sdb
 No Statistics: 8
 sid: 0 SCSI Timeouts
 sid: 1 SCSI Resets
 sid: 2 SCSI Parity Errors
 sid: 3 SCSI Disk Errors
 sid: 4 Grown Defects
 sid: 5 Capacity
 sid: 6 SCSI Transient Errors
 sid: 7 SCSI User Errors

UPDATE: The RSM scsi fault management module portion of this was postponed to
release 1.3 due to scheduling constraints.

• tools: standardize various pathnames for .mdf, .lod and .log files based on distributor
best practices and the Linux standard at http://www.pathname.com/fhs/.

SCSI RAS Tools High-Level Design for Linux 2.4

 17 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

• tools: switch default /dev/sg* device mode from alpha to numeric in each tool. This will
allow distributions such as MontaVista to function without specifying additional
command line options.

• tools: add “Send Diagnostic Command” to the sgdiag tool. This is based on SCSI-3
Primary Commands – section 7.23, and SCSI-3 Block Commands, section 7.1.1. The
purpose of this is that the device will perform a self-test and report a sense error if any
problems are detected.

4.9.1 Product Installation Strategy

When the kernel is installed, either from a binary rpm or from kernel source, the scsi and
md modules will be part of the kernel. The adapter driver kernel configuration
parameters should be enabled by default as modules for maximum flexibility, so that
whichever adapter chipset is used by the target platform can be loaded. The initrd image
allows these drivers to be loaded from the boot filesystem into a ramdisk so that these
drivers are available when at boot time when the root disks need them.

In order to set up a software root mirror configuration on a Linux system, some
distributors (such as RedHat) provide options in the standard GUI installation to set up a
set of RAID-1 disk partitions. However, any Linux distribution can be configured for
root mirroring by using the procedure outlined in the scsirastools UserGuide (see
http://scsirastools.sourceforge.net/docs/UserGuide). Note that some values in the
example procedure may need to be changed, depending on disk size, and whether other
partitions are also present, such as the service partition.

4.9.2 Initialization and Shutdown Strategies

Upon initialization, there are two phases, first md loads itself into memory before the
disks are online, then after the disks and associated drivers are ready, the md driver scans
the partitions on all drives to see if any of them have a partition type of 0xfd, which
signifies that it is intended for Linux raid autodetect. This check is made during the
initial bringup of the Linux OS, so that the root filesystem (which may be Linux raid) can
be mounted. The md driver then reads the superblock on each raid partition to see the
status of the raid. If the superblock on one or more of the partitions is invalid or out of
date, md uses the other disk (latest valid superblock), and marks the older/invalid
partition as part of the raid, but “failed”. It can be remirrored later, as the administrator
desires, using utilities like raidhotremove, raidhotadd, etc.

During shutdown, md is invoked by the kernel at the end of the shutdown process to
make sure that writes to all raid partitions are synchronized and all active devices have
valid superblocks.

4.9.3 Interoperability and Compatibility Support

SCSI RAS Tools High-Level Design for Linux 2.4

 18 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

This software raid functionality should be compatible with any disk drive supported
under Linux, and any SCSI driver supported under Linux. For the purposes of this
project, some of the disk drives and SCSI adapters that are commonly used in servers are
targeted.
SCSI Host Adapters targeted:

• Adaptec aic7xxx family (esp. 7899)
• LSI/Symbios 53c8xx family (esp. 53C1030)

SCSI disks targeted:
• Seagate ST39173 disks
• Seagate ST318452 and ST336752 disks
• Fujitsu MAN3184MP and MAN3367MP disks
• Hitachi DK32DJ-18MW and DK32DJ-36MW disks
• IBM DPSS series disks (DPSS-309170N)

4.9.3.1 Target hardware/software environment

The target platform for this software is a Linux 2.4 OS on an Intel-Architecture server.
This software makes use of the SCSI bus, and assumes that SCSI devices are the default
for internal hard disks. A Carrier Grade Linux Enhancements kernel is built upon the
Linux 2.4.18 kernel.org base.

There are several tested hardware platforms for the SCSI RAS Tools feature:

• Intel TSRLT2/TSRMT2 rack servers (with Adaptec 7899 SCSI) that have space
for 2 disk drives.

• Intel Itanium rack servers (with LSI 53C1030 SCSI) that will have space for 2 or
more disk drives.

• Servers that have an externally attached disk unit with hot-plug capability.
• Other servers that have multiple internal SCSI disks

4.10 Key Design Decisions and Alternatives

The Resource Statistics Monitor SCSI Event subsystem library could have been implemented
within the kernel, or in a special daemon, however, this function fit nicely into the Resource
Statistics Monitor design, and the statistics had already been made accessible to user-space
previously in scsirastools R1.0 and R1.1 enhancements. Therefore, this library will provide a
consolidated view of the SCSI statistics over time, and sample application algorithms to analyze
the data and predict when a given disk will fail. This approach gives the maximum flexibility to
this functionality for customers who may have other factors or other algorithms used to
determine when they want to replace a disk. Implementing it in user-space also does not impact
the performance of the scsi subsystem in the kernel. The RSM SCSI Event subsystem library

SCSI RAS Tools High-Level Design for Linux 2.4

 19 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

will be packaged with the Resource Statistics Monitor Daemon for the sake of convenience. A
standard RSM application to utilize these statistics will be provided in scsirastools release 1.2,
and a custom SCSI application with a pre-defined fault prediction algorithm will be provided in
scsirastools 1.3.

The hot-insertion feature could be provided in the kernel or as a user-space daemon. The
considerations are that adding a new device needs to be reflected in the kernel data structures for
scsi and md modules, but that there may need to be customization of the decisions to be made
when a disk is inserted into the machine. The automatic assumption is that the disk is meant to
be formatted and remirrored, but there may be cases in which a disk is inserted with data that the
customer wishes to preserve. If a daemon is used, the reformatting and remirroring could easily
be disabled, if desired. Also, several existing tools (raidhotadd, mdadm, mapscsi) make it
possible to interact with the kernel to make insertion of a new disk possible from user-space.
Therefore, since it is possible, it is preferred to implement the hot-insertion feature in a user-
space daemon. Further analysis indicates that it is feasible to do all of the required hot-insertion
functions from a user-space daemon (e.g. sgraidmon). This daemon can enumerate the devices,
and by keeping a list of their serial numbers, can detect when a SCSI device has been removed or
inserted. It can also use SAF-TE commands to query the hot-swap backplane, if present, to show
if there are any insertion events. The daemon then can match the sg/sd device name that was
removed/inserted with a raid (md) device name, and invoke a script to partition and remirror the
disk if it was inserted.

The support for LSI 53C1030 chips in the sym53c8xx_2 driver is not included as of this writing.
It should not be too different from the LSI 53C1010 chips that are supported in that driver today.
The 53C1030 support will probably be added by the driver maintainer before the release 1.3
schedule requires this to be done, but if not, and the schedule allows, additional work can be
done to provide the support for 53C1030 prior to implementing the driver hardening features.

SCSI RAS Tools High-Level Design for Linux 2.4

 20 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

4.11 Product Requirements Document (PRD) Correlation

Below are the required items in the release 1.2 schedule as part of the SCSI RAS Tools project:

• SCSI Driver Hardening (includes fixes, POSIX Event Logging, Statistics, etc)
• Adaptec aic7xxx Driver Hardening
• RAID-1 (md) Driver Hardening
• Hot-plug disk support (including SAF-TE)
• Developer validation on IPF
• Intel TSRLT2 Platform Support
• User Documentation

Here is how I see those relating to the key added features in SCSI RAS Tools in release 1.2:
• Support for software RAID hot-insertion events

includes device enumeration, bug fixes, mapping, and auto-formatting
RSM scsi_event subsystem library to predict SCSI disk failures
This driver hardening feature has two aspects: reporting, and predictive analysis. These two
functions can (should) be implemented as discrete modules.

• Support of LSI/Symbios SCSI driver for other platforms, since this is the second-most common
embedded SCSI chipset.

Requirements Design Implementation
Itanium™ Processor Family Support – Features

All features exist in open-source releases shall be available
in CVS for these 64-bit platforms in additional to all new
features developed for relase 1.2.

Itanium (64-bit) support will be utilized on
the Intel server platforms, and should be
enabled during the release 1.2 timeframe to
prepare for new platform releases. Most
software raid and scsi modules are not
anticipated to have significant problems
with 64-bit porting.

Platform Support – Platforms

This project shall provide the support for the following
upcoming carrier-grade server releases:

• Intel TSRLT2 (2U DP Tualatin moving to DP Prestonia
Q4’02)

• Intel TSRMT2 (1U DP Tualatin moving to DP
Prestonia Q4’02)

• Intel Itanium2 servers (supporting 870 Chipset)

This shall include:
• Hardware enabling features, including processor

feature, chipset, adapter drivers, etc.
• Key enabling software features needed for the

platforms or for key customers considering the
platform

The aic7xxx driver is used for the 7899 chip
on most of these platforms, but the LSI
53C1030 chip will be used on some of the
Itanium2 platforms and will require a
separate development/hardening effort.

Hardened Driver Support – Implementation

The purpose of this device drivers hardening requirement is to add
the enhancement to a existing device driver code to provide the
HA capability such as:

SCSI Driver Hardening

In Release 1.0 the AIC7XXX, SCSI, and
MD drivers were Level 2 compliant, except

SCSI RAS Tools High-Level Design for Linux 2.4

 21 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

• Harden the driver to withstand the abnormal and stressed
operation,

• Provide robust operation in the case of failure,

• Provide error reporting in the case of failure,

• Provide system monitoring functions to this device
driver for diagnostic or resource monitoring purpose,

Each device driver listed above shall implement all level 1 and
level 2 hardening tasks as specified here. Level 3 tasks shall be
implemented if they are applicable to a specific device driver.
These 3 levels are:

Level 1

• Comply with Coding Practices – all device driver code
shall comply with the coding standards from the DH
Whitepaper

• Fault Injection Tested – all device drive shall be tested
and passed with fault injection testing as specified in the
Document “Fault Injection Testing Specifications”.

Level 2

• Event Logging and Error Reporting

(Use POSIX IEEE Std. 1003.25 service)

• Statistic Reporting:

o Provide hardware statistics data to support
Ravenel resource monitoring feature via
standard APIs.

o Provide Real Time software statistics data to
support Ravenel resource monitoring feature
via standard APIs,

o Supporting various statistic data types –
counters, watermarks, and thresholds.

o Provide configurable statistics data including
configuration file options, runtime flags,
runtime commands, or loading of an
alternative drivers with compile time flags for
diagnostic purpose.

• Diagnostics Support

o Routines/APIs to perform self test and report
result

o Routines/APIs to support of online diagnostics
and report result

o Routines/APIs to support of offline diagnostics
and report result

Level 3

• Hot Swap

o Comply with PICMG Compact PCI Hot Swap
Infrastructure Interface Specifications,

• Fault Recovery

o Automated detect device driver fault, report

for the statistics not yet being reported via
an RSM library.

In Release 1.2, these drivers shall become
Level 3 compliant.

SCSI RAS Tools High-Level Design for Linux 2.4

 22 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

errors, and recovery from the fatal error.

o APIs to perform re-initialization and recovery
the device driver error.

• Dynamic configuration

o The device driver shall be a dynamically
loadable module so that device driver can be
load/unload at the run time without re-boot the
system.

Table 4-9: Correlation of requirements to high-level design specification.

SCSI RAS Tools High-Level Design for Linux 2.4

 23 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

Appendix A Definitions
A. Definitions of Terms and Acronyms

Term Definition
GPL GNU Public License. The default license for Linux software, required

for most Linux kernel modules.

RSM Resource Statistics Monitor, as defined by the SourceForge project in
the references.

Table A-1: Definitions

SCSI RAS Tools High-Level Design for Linux 2.4

 24 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

 Appendix B Design Description Techniques
B. Execution Scenarios

B.1 Scenario 1 – Disk bad spot develops
If a bad spot develops on the disk media, it will start to show up as a sense error showing a
successful (recovered) read/write with retries (e.g.: key=03/asc=17/ascq=01). If the mode pages
are set properly (see sgmode), the disk will probably automatically reallocate the bad spot when
it becomes an unrecovered error (e.g.: key=03/asc=17/ascq=06). If not, then the disk will report
this unrecovered error to the application (e.g.: key=03/asc=11/ascq=00), and the log messages,
along with the /proc/scsi/scsi information, will uniquely identify which disk has the bad spot, and
where it is (info field of the logged sense report gives the LBA on the disk). The redundancy of
the root mirror also comes into play at this point.
At this point the administrator would want to check the number of grown defects with sgdefects,
and may choose to reformat the disk to reallocate any logged defects. He would do this by
removing the disk from the mirror (mdadm, raidhotremove), then format the disk with sgdiag.
The sgdefects tool would show that the bad spot had been added to the grown defect list
afterwards. The disk could then be remirrored again, and the entire procedure occurred while the
system was operational in Linux. Note that the remirror process is designed to only occupy a
minimal amount of processing time so that critical user processes take precedence over it.

B.2 Scenario 2 – Systematic defect is discovered in disk configuration or firmware
If there have been several disk errors and the logs provided to the OEM vendor indicate a
systematic problem, it is often resolved with either a mode page configuration change or a disk
firmware upgrade. For the mode page changes, sgmode can be run with the new settings on all
disks in the system automatically without taking the disks out of operation. For a disk firmware
upgrade, it is recommended that the disks be taken out of the mirror in turn and sgdskfl should be
used to upgrade the disk firmware. Again, no downtime is experienced by the system for this
correction. Without these added tools and logging, however, each system would have to be
taken out of service and require 30-60 minutes of downtime, with a great deal of service cost.
For each disk (2 per system) a script could be executed to:

1. Remove the disk from the active software RAID-1 (via raidhot* or mdadm
commands)

2. Run sgdskfl to download the firmware to the disk.
3. Add the disk back into the software RAID-1 (via raidhot* or mdadm commands)
4. When the remirror is complete (check with /proc/mdstat), repeat for the other disk.

B.3 Scenario 3 – A disk fails to function
If a disk fails to function properly, sgdiag can be used to test its internal diagnostics for clues.
Even if it fails to respond completely, since the disks are mirrored, no downtime is experienced,
and the disk can be analyzed later for faults, along with the syslog or event log messages to
determine the root cause of the failure. When the disk is replaced (either with normal service, or
via hot-plug if supported), it can be remirrored in background (raidhotadd), while the system
continues to operate. A further enhancement is shown when the scsi_event RSM library predicts

SCSI RAS Tools High-Level Design for Linux 2.4

 25 HLD Rev. 1.2 - 21/Jan/03 03:56 PM

a disk failure event before it happens, allowing administrators time to plan for replacement of the
disk at their convenience.

